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We develop a theory for surface modes at the nematic-isotropic interface in thermotropic nematogen–non-
nematogen mixtures. We employ the dynamical generalization of the Landau–de Gennes model for the orien-
tationalsnonconservedd order parameter, coupled with the Cahn-Hilliard equation for concentrationsconserved
parameterd, and include hydrodynamic degrees of freedom. The theory uses a generalized form of the
Landau–de Gennes free-energy density to include the coupling between the concentration of the non-
nematogen fluid and the orientational order parameter. Two representative phase diagrams are shown. The
method of matched asymptotic expansions is used to obtain a generalized dispersion relation. Further analysis
is made in particular cases. Orientational order parameter relaxation dominates in the short-wavelength limit,
while in the long-wavelength limit viscous damping processes become important. There is an intermediate
region sdepending on the temperatured in which the interaction between conserved parameter dynamics and
hydrodynamics is important.
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I. INTRODUCTION

Most liquid crystals used in technological applications,
such as electro-optical devicesf1g, are mixtures. Often we
have to consider inhomogeneous mixtures between thermo-
tropic nematogen and a non-nematogen. The dynamics of
such materials involves treating not only the orientational
order but also the concentration of nematogen. However, in a
dynamical theory these two—coupled—variables have a dif-
ferent status. Orientational order is anonconservedorder pa-
rameter and normally relaxes diffusively. By contrast, con-
centration is aconservedorder parameter, and relaxes
through an induced current. The coupling of a conserved
order parameter to a nonconserved order parameter, even
when the latter is in some sense the driving force in the
system, thus has profound effects on the dynamics. A subset
of these effects is the subject of this paper.

In these systems, a biphasic region between the isotropic
and the nematic phases appears below the nematic-isotropic
transition temperature of the pure nematogen. When the sys-
tem is thermally quenched from the stable isotropic phase
into the biphasic region, fluctuations of concentration and of
orientational order occur, and isotropic or nematic droplets
can appear. By whatever early stage process, e.g. nucleation
or spinodal decomposition, domain walls—otherwise known
as interfaces—soon form.

In this paper, we analyze the problem of damping of cap-
illary waves at these interfaces. In the case of a pure nem-
atogen compound, very different dispersion relations for
waves at the nematic-isotropic interface can be derived de-
pending on the way the calculations are done. More pre-
cisely, the diffuse interface model, solved by assuming that
the order parameter and velocity fields do not interact, leads

to purely diffusive surface waves whose mode structure is
identical to that of the bulk diffusive modes found in the
time-dependent Ginzburg-Landau equationf2g. However, for
the same problem, the sharp interface model yields modified
capillary waves, with a large propagating component.

In the two previous papersf3,4g, we have examined this
problem for a simpler system in which there was only one
component. The two points of view have been reconciled by
analyzing the surface eigenmodes of the nematic-isotropic
interface within the Hess-Olmsted-Goldbart-Qian-Sheng
phenomenological modelf5–7g of nematogenic fluids. Inf3g,
it was assumed that the nematic director is fixed in space and
time, so that the relevant physics was only described by a
scalar order parameter. It turns out that this assumption is
only valid if the interfacial tension is isotropic. This required
that sad the surface tension does not depend on the director
orientation at the interface, andsbd sless obviouslyd backflow,
i.e., coupling between the flow and the director, can be ne-
glected. A general dispersion relation was then obtained,
having as particular cases two different regimes. In the short-
wavelength limit, the interface is diffusive and the relaxation
of the order parameter is the dominant process. By contrast,
in the long-wavelength limit, the interface is sharp and the
viscous damping process dominates. For pentylcyanobiphe-
nyl s5CBd, the transition between these two regimes takes
place atlc=5 mm, which should be visible experimentally.

In f4g, we reconsidered the problem in a more general
way, taking into account both the hydrodynamic coupling
with the director and the surface tension anisotropy, which
can be as large as 20% at the nematic-isotropic interface. As
a result, interface oscillations couple with the director field
via hydrodynamic flow and backflow effects. In the general
dispersion relation, three distinct regions can be distin-
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guished:sid at very large values ofl sl.lc1
.6 cmd, the

dissipation due to shear flow dominates and the nematic be-
haves as a viscous isotropic fluid;sii d at intermediate values
of l slc2

.1310−4 cm,l,lc1
d, curvature elasticity and

backflow effects become important; and finallysiii d at low
values ofl sl,lc2

d, the relaxation of the order parameter
governs the physics. The numerical valueslc1

andlc2
corre-

spond to 5CB. The influence of the anisotropy of the surface
tension and of the hydrodynamic coupling between the flow
and the director has a fairly small effects.−20%d on the
relaxation rate. By contrast, the influence on the phase ve-
locity is very important in the second region, in which a new
propagating mode is observed. The effect of the rotational
viscosity and the associated backflow effect are much more
important than that of the anchoring energy.

In this paper, we extend this analysis to the nematic-
isotropic interface in thermotropic nematogen–non-
nematogen mixtures. The new physics involves coupling
time-dependent Ginzburg-Landau and Cahn-Hilliard equa-
tions f8g with hydrodynamic degrees of freedom. A similar
model has been used to study the nematic-isotropic interface
in a polymer-nematic mixturef9g and the behavior of a sus-
pension of rigid rod particles in shear flowf10g in the frame-
work of the Doi modelf11g.

The unperturbed or base state of the system is a planar
nematic-isotropic interface in equilibrium. This condition
fixes its temperature. To simplify, we further assume that the
temperature is uniform. There is thus no temperature gradi-
ent perpendicular to the interface. Due to thermal fluctua-
tions, small amplitude monochromatic waves develop at the
interface. We use a linear stability analysis of the equations
to obtain their dispersion relation.

The paper is organized as follows. In the next section, we
introduce the free energy of a nonuniform thermotropic
nematogen–non-nematogen mixture system. We present the
static phase diagrams and derive the interfacial tension be-
tween coexisting phases. In Sec. III, we give the governing
equations. We then present in Sec. IV the dispersion relations
corresponding to the two regions defined by the typical
lengths in the problem. The general dispersion relation and
numerical results are presented in Sec. V. In Sec. VI, we
draw some conclusions and present directions for future
work.

II. FREE ENERGY

A thermotropic nematic–non-nematic mixture is charac-
terized by a conserved parameter and a nonconserved param-
eter. The conserved parameter is the concentrationc=N1/N
of the non-nematic component, whereN1 is the number of
molecules of non-nematic component andN the total number
of molecules. The nonconserved parameter is the orienta-
tional nematic order parameterQab. The orientational order
parameter is a traceless symmetric second rank tensor with
components given byf12,13g

Qab = Ss3nanb − dabd/2, s1d

where the unit vectornW is the nematic director andS is the
usual scalar order parameter.S=0 in the isotropic liquid and

S=1 in a fully oriented nematic phase. In this paper, we shall
simplify by supposingnW to be fixed in space and time, and
the relevant physics is given by the scalar order parameter
SsrW ,td. We note that this is an idealization which is in general
not true during the relaxation, and even not true close to the
interface. However, previous studiesf2g suggest that the
slowest relaxation modes approximately fulfill this condition
when the director anchoring is homeotropic at the interface.
In a later work, we shall relax this approximation.

Within the mesoscopic approach, the free-energy func-
tional is given by

Ffc,Qabg =E F fsc,Qabd +
1

2
Kcs¹W cd2 + K0s]acds]bQabd

+
1

2
L1s]gQabd2 +

1

2
L2s]aQabd2GdV, s2d

where Kc and K0 are phenomenological coefficients. The
elastic constantsL1 and L2 are related to the Frank-Oseen
elastic constants by the relationsK1=K3=9Sn

2sL1+L2/2d /2
andK2=9Sn

2L1/2, whereSn is the bulk nematic order param-
eter. In the so-called “one-constant approximation”sK1=K2

=K3=9KS/2d andSn=1, L1=KS andL2=0, values which we
consider in this paper. The bulk free-energy densityfsc,Qabd
consists of two parts,

fsc,Qabd = fmixscd + fnemsc,Qabd. s3d

The first term is the free-energy density of the isotropic
mixing for the two components, which governs phase sepa-
ration. According to the Flory theory, the free-energy density
is given byf14g

fmixscd =
NkBT

V
fs1 − cdlns1 − cd + c ln c + xcs1 − cdg, s4d

wherekB is the Boltzmann constant,T is the absolute tem-
perature, andx=sU0/kBTd is the Flory-Huggins interaction
parameter related to isotropic interaction between unlike mo-
lecular speciesf14g.

The second term in Eq.s3d is the Landau–de Gennes free-
energy density, which governs the isotropic-nematic phase
transition,

fnemsc,Qabd = s1 − cdhafT − s1 − cdT*gQabQba

− BQabQbgQga + CsQabQbad2j. s5d

The coupling betweenc and Qab in Eq. s5d results from
microscopic considerations. According to Humphries-James-
Luckhurst theory on a binary mixturef15g, the orientational
free energy per molecule in a mean-field approximation is
given by

f/NkBT = −
s1 − cd2uS2

2
+ s1 − cd E fsbdln fsbdsinbdb,

s6d

where the strength of the molecular field is determined by
the molecular anisotropyu, b is the angle between the sym-
metry axis of thescylindrically symmetricd molecule and the
director, and fsbd is the singlet orientational distribution
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function. The first term is the internal energy per molecule,
while the second one represents the decrease of entropy due
to the nematic ordering. The free energy given in Eq.s6d can
be compared with the Landau–de Gennes expansionf16g.
The consequence is that only theT* term in Landau–de
Gennes free energy comes from the internal energy, while
the other terms result from the entropy expansion.

For a pure nematogen, using the forms1d for Qab, the
bulk free-energy density has the well-known form

fsSd =
3

2
asT − T*dS2 −

3

4
BS3 +

9

4
CS4, s7d

which describes a first-order nematic-isotropic phase transi-
tion. For T=TNI =T* +B2/24aC, the two phases—nematic
sSnem=B/6Cd and isotropicsSiso=0d—coexist in equilibrium.
T* is the undercooling limit temperature of the isotropic
phase.

A. Phase diagrams

The calculation of static phase diagrams requires only the
bulk free-energy density. We now nondimensionalize the free
energy. The orientational order parameter is normalized with

respect to its value at the transitionS̄=S/Snem, using the re-
duced temperaturet=sT−T*d / sTNI −T*d. The dimensionless

free-energy density is nowf̄ = f / f0, where f0=B4/242C3.
Omitting the bar notation, the nondimensional free-energy
density becomes

fsc,Sd = Gfs1 − cdlns1 − cd + c ln c + xcs1 − cdg

+ s1 − cdfst + lcdS2 − 2S3 + S4g, s8d

where G=NkBT/Vf0 and l=24aCT* /B2. Now, for a pure
nematogen the phase-transition temperature istNI =1 and the
corresponding value of the nematic orientational order pa-
rameter isSnem=1.

The equilibrium conditions can be written asf17g

Dgsc,Sd = 0,
]Dg

]c
sc,Sd = 0,

]Dg

]S
sc,Sd = 0, s9d

where Dgsc,Sd= fsc,Sd− fsciso,0d−msc−cisod is the differ-
ence in Gibbs free-energy density between the two phases
andm=s]f /]cdsciso,0d is the chemical potential.

We now introduce two representative phase diagrams for
nematic–non-nematic mixture, plotted on the temperature-
concentration plane. The coexistence curvessbinodalsd in
these phase diagrams were calculated numerically, by finding
pairs of states with equal chemical potentials and pressures.
This is equivalent to minimization ofDg with respect to the
nonconserved order parameterS fthe third equation in Eqs.
s9dg, followed by a common tangent to a pair of points on the
curve fscd f17g fthe first two equations in Eqs.s9dg. The
spinodal line, which separates metastable from unstable
compositions, is given by the inflection point of the Gibbs
free-energy densitys]2Dg/]c2=0d.

The corresponding phase diagrams are plotted in Fig. 1.
The solid curves refer to the binodal and the dotted lines
shows the hidden first-order nematic-isotropic transition,

where the isotropic and nematic branches of the Gibbs free-
energy density are equal. The dashed-dotted lines are the
spinodals. Figure 1sad shows the phase diagram forG=l
=x=1. For this value of the Flory-Huggins interaction pa-
rameter, the free-energy densityfsc,0d Eq. s8d does not pre-
dict a spinodal decomposition in the isotropic regionsthus
there is only one isotropic phase in the phase diagramd. For
temperatures belowTNI stNI =1d, there exists a two-phase
coexistence region between an isotropic and a nematic phase
sI+Nd. On decreasing the temperaturesnote that the under-
cooling limit temperature for isotropic phaseT* in the pure
nematogen corresponds tot* =0d, the biphasic region broad-
ens. Within the biphasic region, there are two different meta-
stable regions: an isotropic metastablesImd and a nematic
metastablesNmd region, as well as an unstable region of the
nematicsNud.

For a higher value of the Flory-Huggins interaction pa-
rameter, the phase diagram develops a triple point. Figure
1sbd shows the phase diagram forG=l=1 andx=2.5. For

FIG. 1. Phase diagram for nematic–non-nematic binary mixture.
The solid curve refers to the binodal, the dotted line shows the
hidden nematic-isotropic phase transition, and the dashed-dotted
line is the spinodal.sad G=l=1 andx=1. Belowt=tNI =1, a region
of two-phase coexistence exists between isotropic and nematic
phasessI +Nd. sbd x=2.5 and the other parameters are the same as
in sad. At t=0.906 there is a triple pointsTPd where two isotropic
phasessI1+ I2d and a nematic phasesNd can simultaneously coexist.
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this value ofx, there is asclassicald phase separation even in
the isotropic regionsthus there are two isotropic phasesI1
and I2d; I1 sI2d refers to the isotropic liquid phase of higher
slowerd concentration on the phase diagram. The arrow
shows the critical point for theI1+ I2 phase separation. At
t=0.906, there is a triple pointsTPd where the two isotropic
phases and the nematic phase can simultaneously coexist.
There are two spinodalsunstabled regions in the phase dia-
gram, i.e., an isotropic spinodal regionsI2ud and a nematic
spinodal regionsNud, which are separated by the hidden
nematic-isotropic transition line. Similar phase diagrams
have been obtained by other workers for polymeric–liquid-
crystals mixturef18g.

In both phase diagrams, we can distinguish two different
regions. Neart=1, the concentration jump at the transition is
very small, so that the important effect results from the non-
conserved order parameter variation. On decreasing tempera-
ture, the concentration jump at the transition is larger and the
variation of the conserved parameter becomes important.

B. Interfacial tension

We consider a planar nematic-isotropic interface of area
A in equilibrium in the nematic–non-nematic mixture and
take thez axis perpendicular to the interface. The free-energy
functional s2d can be expressed as

Ffc,Sg = AE
−`

`

dzF fsc,Sd +
1

2
Kcs]zcd2 + K0s]zcds]zSd

+
1

2
KSs]zSd2G . s10d

We rewrite Eq.s10d in dimensionless form by measuring
length in unit of lS=sKSSnem

2 / f0d1/2 and introducing the di-

mensionless quantitiesK̄c=Kc/KSSnem
2 , K̄0=K0/KSSnem, and

F̄=F /Af0lS. Omitting the bar notation, Eq.s10d can be re-
written as

Ffc,Sg =E
−`

`

dzF fsc,Sd +
1

2
Kcs]zcd2 + K0s]zcds]zSd

+
1

2
s]zSd2G . s11d

The interfacial tensiong is defined as the difference, per
unit area of the interface, between the free energy of the
system and that of the two phases if each were uniform and
isolated. Hence in nondimensional form it can be written as

g =E
−`

`

dzFDgsc,Sd +
1

2
Kcsdzcd2 + K0sdzSdsdzcd +

1

2
sdzSd2G .

s12d

Minimizing the functional in Eq.s12d with respect tocszd
andSszd, we obtain the corresponding Euler-Lagrange equa-
tions for the equilibrium profiles of the order parameters,

Kcdz
2c0 + K0dz

2S0 =
]Dg

]c
, s13d

dz
2S0 + K0dz

2c0 =
]Dg

]S
, s14d

with the following boundary conditions:

sc,Sd = Hscnem,Snemd asz→ − `,

sciso,0d asz→ `,
J s15d

anddzcs±`d=dzSs±`d=0.
Multiplying Eq. s13d by dzc and Eq.s14d by dzS, adding

the resulting equations, and then integrating once with re-
spect toz, we obtain the condition for a planar equilibrium
interface solution,

Dg =
1

2
Kcsdzcd2 + K0sdzSdsdzcd +

1

2
sdzSd2. s16d

Using this expression to eliminate the gradient terms from
Eq. s12d, the interfacial tension becomes

g = 2E
−`

`

Dg„cszd,Sszd…dz. s17d

To perform numerical calculations, we have taken values
for the bulk Landau–de Gennes free-energy parameters
which correspond to 5CB:a=3.33105 erg/K cm3, B=8.9
3106 erg/cm3, andC=5.63106 erg/cm3 f19g, which gives
f0=8.63103 erg/cm3, and the typical experimental values
given in the literature:KS=2.1310−7 dyn, Kc=K0=8.4
310−6 dyn, and gS=1310−2 erg/cm2 sgS is the nematic-
isotropic interfacial tension for a pure nematogend
f13,18,20,21g. By numerically solving the Euler-Lagrange
equationss13d ands14d, we calculate the equilibrium profiles
cszd andSszd swhich are very close to the well-known hyper-
bolic tangent profilesd and using Eq.s17d the interfacial ten-
sion for the nematic-isotropic equilibrium interface.

In Fig. 2, we plot the interfacial tensiong between the
isotropic and nematic phases, as a function of the reduced
temperaturet, for both phase diagrams presented in Fig. 1.

FIG. 2. Interfacial tensionsgd between the isotropic and nematic
phases plotted against the reduced temperaturestd. The reduced
interfacial tensiong /gS is normalized by the interfacial tensionsgSd
for the isotropic-nematic interface of the pure nematogen. Solid
line: G=l=x=1. Dashed line:G=l=1 andx=2.5.
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The reduced interfacial tensiong /gS is normalized by the
interfacial tensiongS of an isotropic-nematic interface of the
pure nematogen att=tNI =1. In the first casesfor x=1, con-
tinuous line in Fig. 2d, the interfacial tension is practically
constant neart=1 and then increases rapidly with decreasing
temperature. Forx=2.5 sdashed lined, the interfacial tension
has a jump at critical pointt=tc=0.906 because the nematic-
isotropic interface changes.

III. EQUATIONS OF MOTION

We assume that the heat diffusion is sufficiently rapid in
order that the system remains at thermal equilibrium. We
therefore ignore the equation for energy conservation and
assume an isothermal system at a specified temperature. We
further assume the fluid is incompressible. Within these ap-
proximations, the equations of motion for the velocity and
the nematic order parameter becomef5–7g

]ava = 0, s18d

r
dva

dt
= ]bs− pdab + sab

d + sab
v d +

dF

dc
]bcdab, s19d

0 = hab + hab
v − ldab − eabglg, s20d

wherer is the density,p is the pressure, whilel andlg are
the Lagrange multipliers associated to conditions TrQ=0 and
Qab=Qba, respectively. In this expression,a, b, andg run
from 1 to 3, summation over repeated indices is implied,
eabg is the Levi-Civita symbol, andd/dt is the total time

derivative] /]t+vW ·¹W . The distortion stresssd fwhich results
from molecular displacement keeping the orientation fixed:
rW→ rW8+uWsrWd ,QabsrWd→Qab8 srW8d=QabsrWdg and the elastic mo-
lecular fieldh fwhich results directly from the virtual orien-
tational distortion:QabsrWd→Qab8 srWdg are obtained in standard
manner as

sab
d = −

]F

]s]aQgrd
]bQgr, s21d

hab = − dF/dQab. s22d

The viscous stress tensorsv and the viscous molecular field
hv are introduced through the consideration of entropy pro-
duction in a dissipative flowing nematic. They are given by a
tensorial generalization of the Ericksen-Leslie theory
f22,23,7g,

sab
v = b1QabQmnAmn + b4Aab + b5QamAmb + b6QbmAma

+
1

2
m2Nab − m1QamNmb + m1QbmNma, s23d

− hab
v = −

1

2
m2Aab + m1Nab, s24d

where

Nab =
dQab

dt
+ QamWmb − WamQmb s25d

is the time rate of change of the order parameter with respect
to the background fluid angular velocity, sometimes known
as corotational time derivative. The quantitiesb1, b4, b5, b6,
m1, and m2=b6−b5 are viscous coefficients which can be
expressed in terms of the Leslie coefficientssaid and the
value of the order parameterS f7g, while Aab= 1

2s]avb

+]bvd and Wab= 1
2s]avb−]bvad are, respectively, the sym-

metric and antisymmetric parts of the velocity gradient ten-
sor.

The concentration equation of motion takes the Cahn-
Hilliard form f8g

dc

dt
= − ¹W ·JW = Gc¹W

2m, s26d

where the transport coefficientGc is assumed to be constant
and the chemical potential is given by

m =
dF

dc
. s27d

The diffusive current isJW =−Gc¹W m. The complete dynamics
is thus describe by Eqs.s18d–s20d and s26d. The dynamical
equations of motion for other complex fluids have the same
theoretical structure: equations of motion for the conserved
quantities and the broken-symmetry or flow-induced struc-
tural snonconservedd order parametersanalogous toQabd,
and a constitutive relation for the stress as a function of
composition and order parameterf17g.

Let us now define the three typical lengths of the problem.
sid The first length is related to the order parameter itself.

It strongly varies across the interface over a typical distance
known as the microscopic correlation lengthlS
=sKSSnem

2 / f0d1/2 that for 5CB has the value 5310−6 cm. This
length gives the typical width of the order parameter profile
within the interface.

sii d The second microscopic length is related to the con-
centration variation inside the interfacelc=sKc/ f0d1/2 that for
5CB has the value 3310−5 cm.

siii d The thirdsmacroscopicd length is associated with the
vorticity, i.e., with the flow induced by the motion of the
interface. The corresponding physics is described by the gen-
eralized Navier-Stokes equations8d, which can be considered
in the thin interface limit. The important physical parameters
are the capillary force, associated with the interfacial tension
g, the viscous dissipation, associated with viscosity coeffi-
cienth, and the fluid inertia, governed by the mass densityr.
From these three quantities, we can construct only one length
lh=h2/rg. For 5CB,r=1 g/cm3, g=1310−2 erg/cm2, and
h=0.1P, so thatlh=1 cm. This length separates the inertial
from the viscous regimes; the corresponding value of the
Reynolds number is unitysfor details, seef4gd.

In the following, we shall useth=h3/rg2 as unit time,
which is the typical relaxation time of a perturbation of size
lh and for 5CB has the value 10 s. In the following, the ratio
e= lS/ lh= lc/ lh.10−5 will constitute the small parameter of
the theory.
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We consider a two-dimensional flow with horizontal and
vertical velocity componentsu and w in the x and z direc-
tions, respectively, and we simplify the expressionss23d and
s24d by assuming that

b1 = b5 = b6 = 0, b4 = 2b, s28d

which givem2=0 f7g. In terms of Leslie coefficientsai, these
relations are equivalent to

a1 = a5 = a6 = 0, −a2 = a3 = a = 9S2m1/4, a4 = b4 = 2b.

s29d

Within these approximations, the coefficientb describes the
dissipation due to shear flowsshear viscosityd, while m1 is
associated to the standard rotational viscosityg1=a3−a2
=2a=9S2m1/2.

Using these hypotheses and Eqs.s1d–s5d, the basic Eqs.
s18d–s20d and s26d take the following form:

0 = ]xu + ]zw, s30d

r
du

dt
= − ]xp + h¹W 2u − sKS¹W

2S+ K0¹W
2cd]xS

+ S ]f

]c
− Kc¹W

2c − K0¹W
2SD]xc, s31d

r
dw

dt
= − ]zp + h¹W 2w − sKS¹W

2S+ K0¹W
2cd]zS

+ S ]f

]c
− Kc¹W

2c − K0¹W
2SD]zc, s32d

3m1

2

dS

dt
= −

]f

]S
+ KS¹W

2S+ K0¹W
2c, s33d

dc

dt
= Gc¹W

2S ]f

]c
− Kc¹W

2c − K0¹W
2SD , s34d

whereh=sa+2bd /2. This viscosity corresponds to the sec-
ond Miesowicz viscosityhb f13g, i.e., to the viscosity of the
nematic phase when it is sheared parallel to the director.

We rewrite Eqs.s30d–s34d in dimensionless forms by
measuring length in units oflh, and time in units ofth. We
use the same scaling as in Sec. II A for the orientational
order parameter and for the free-energy density, and we in-
troduce the dimensionless quantities

r̄ =
lh
2

f0th
2 r, p̄ =

p

f0
, h̄ =

h

thf0
,

m̄1 =
3Snem

2

2thf0
m1, Ḡc =

th

lh
2 f0

Gc. s35d

Omitting the bar notation in the following, we obtain

0 = ]xu + ]zw, s36d

r
du

dt
= − ]xp + h¹W 2u − e2s¹W 2S+ ¹W 2cd]xS

+ S ]f

]c
− e2¹W 2c − e2¹W 2SD]xc, s37d

r
dw

dt
= − ]zp + h¹W 2w − e2s¹W 2S+ ¹W 2cd]zS

+ S ]f

]c
− e2¹W 2c − e2¹W 2SD]zc, s38d

m1
dS

dt
= −

]f

]S
+ e2¹W 2S+ e2¹W 2c, s39d

dc

dt
= Gc¹W

2S ]f

]c
− e2¹W 2c − e2¹W 2SD , s40d

wheree2= lS
2/ lh

2 = lc
2/ lh

2 = l0
2/ lh

2 with l0=sK0Snem/ f0d1/2.
In what follows, we shall suppose that the stationary pla-

nar nematic-isotropic interfacesi.e., the base state of the sys-
temd is situated atz=0, such that the nematic lies in the
regionz,0 and the isotropic phase in the regionz.0. Thex
axis is taken in the direction of the wave vectorkW of the
perturbation along the interface. This is possible without loss
of generality, as the system is isotropic in thex andy direc-
tions, i.e., neglecting the biaxiality of the nematic phase. In
this way, the wave numberk represents the modulus of the
two-dimensional wave vector in the plane of the interface.

IV. ASYMPTOTIC ANALYSIS FOR e™1

To obtain the dispersion relation, we use the method of
matched asymptotic expansionsf24g. The method consists in
matching the solution obtained inouterregions, wherez is of
the order unity, to that in aninner regions, in whichz is
small. In our case, there are two outer regions B and C, of
dimension lh, in which the dominant physics is hydrody-
namic: dissipation due to shear flow. These two regions are a
z→−` deep nematic region and az→ +` deep isotropic
region. In the inner region A of dimensionlS. lc. l0, both
conserved and nonconserved order parameters vary rapidly.

We expand the solution in the outer regions as regular
perturbation series ine2,

u = us0dsx,zd + e2us2dsx,zd + Ose4d,

w = ws0dsx,zd + e2ws2dsx,zd + Ose4d,

c = cs0dsx,zd + e2cs2dsx,zd + Ose4d,

S= Ss0dsx,zd + e2Ss2dsx,zd + Ose4d. s41d

In the inner region, we setz=x/e and j=z/e and write
similar expansions for the variablesûsz ,jd=usx,zd, ŵsz ,jd
=wsx,zd, ĉsz ,jd=csx,zd, andŜsz ,jd=Ssx,zd.
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A. Outer regions: B and C

Herec andS are constant in each phase. We find that, to
all orders,sc,Sd=scnem,Snemd for z,0 andsc,Sd=sciso,0d for
z.0. The leading-order problem forus0d andws0d in the outer
region of the nematic phase Bsz,0d is given by

0 = ]xu
s0d + ]zw

s0d, s42d

r
dus0d

dt
= − ]xp

s0d + hN¹W 2us0d s43d

r
dws0d

dt
= − ]zp

s0d + hN¹W 2ws0d, s44d

wherehN=sa+2bd /2 is the shear viscosity of the nematic
phase. These equations have the same form in the outer re-
gion of the isotropic phase Csz.0d, but with a different
shear viscosity coefficienthI =b. The density difference be-
tween the isotropic and the nematic phase is usually very
small, so that we can consider in a good approximation that
the two fluids have the same density.

Thus, the outer problem is equivalent to the Navier-Stokes
equation for an interface between two fluids with the same
density but with different viscosities, subject to the incom-
pressibility conditionf25,26g. The solution corresponding to
the stationary planar interface is given byu0

s0d=w0
s0d=0,p0

s0d

=const.
We now impose a small periodic sinusoidal perturbation

to the interface of the formjI =jk expsikx−Vtd, wherejI is
the vertical displacement of the interface with respect to its
equilibrium positionz=0. In our notation,k is the wave vec-
tor sreal numberd andV is the angular frequency. The latter
quantity is generally a complex number whose real part gives
the relaxation timet=1/ResVd of the wave, and the imagi-
nary part, the phase velocityvp=ImsVd /k.

For a nematic of large depthsregion B: −̀ ,z,0d, the
wavelike solutions of Eqs.s42d–s44d are of the formsfor
details, seef4gd

uN
s0d = sikANekz− lNCNelNzdexpsikx − Vtd, s45d

wN
s0d = skANekz+ ikCNelNzdexpsikx − Vtd, s46d

pN
s0d = p0

s0d + rVANekz expsikx − Vtd. s47d

Similarly, in the isotropic phasesregion C: 0,z,`d,

uI
s0d = sikAIe

−kz+ l ICIe
−l Izdexpsikx − Vtd, s48d

wI
s0d = s− kAIe

−kz+ ikCIe
−l Izdexpsikx − Vtd, s49d

pI
s0d = p0

s0d + rVAIe
−kz expsikx − Vtd, s50d

wherelN=ks1−rV /hNk2d1/2 and l I =ks1−rV /hIk
2d1/2.

Equationss45d–s50d correspond to the classical sharp-
interface approach, where it is assumed that the thickness
of the inner region is zero. In this limit, the dispersion
relation is determined by the boundary conditions at the

nematic-isotropic interface, which can be taken atz=0 due to
the smallness of the amplitude of the oscillationsf25,26g.
These conditions are as followssfor details, seef4gd:

sid, sii d, andsiii d: The x andz components of the velocity
and the tangential components of the stress tensor must be
continuous.

sivd The jump of the normal component of the stress ten-
sor is given by the Laplace law,

szzsNd − szzsId = g
]2jI

]x2 . s51d

After substituting solutionss45d–s50d into the boundary con-
ditions, we obtain the dispersion relation in leading order in
the outer region,

Vh
2 = F1 +

kslN
2 + l I

2d − 2k3

slN + l Idsk2 − lNl Id
GV0

2, s52d

whereV0
2=−gk3/2r is the capillary wave dispersion relation

for ideal fluids. The quantityg is the interfacial tension. It
enters here as a parameter through Laplace’s laws51d. In the
more generalized model discussed in this paper, it can be
calculated from the inner region solution.

B. Inner region A

To look for the solutions in the inner region, we rewrite
Eqs. s36d–s40d in terms of inner variablesz=x/e and j
=z/e,

0 = ]zû + ]jŵ, s53d

r̃
dû

dt
= − ]zp + h¹W 2û − s¹W 2Ŝ+ K̃0¹W

2ĉd]zŜ

+ S ]f

]ĉ
− K̃c¹W

2ĉ − K̃0¹W
2ŜD]zĉ, s54d

r̃
dŵ

dt
= − ]jp + h¹W 2ŵ − s¹W 2Ŝ+ K̃0¹W

2ĉd]jŜ

+ S ]f

]ĉ
− K̃c¹W

2ĉ − K̃0¹W
2ŜD]jĉ, s55d

m1
dŜ

dt
= −

]f

]Ŝ
+ ¹W 2Ŝ+ K̃0¹W

2ĉ, s56d

dĉ

dt
= G̃c¹W

2S ]f

]ĉ
− K̃c¹W

2ĉ − K̃0¹W
2ŜD , s57d

where r̃= lS
2r / f0th

2, K̃c=Kc/KSSnem
2 , K̃0=K0/KSSnem, and G̃c

= thGc/ lS
2f0.

The first step is to ignore the interaction between the ve-
locity and the order parameters variations. In the leading
order, omitting the tilde signs, we obtain
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]zp = − s¹W 2Ŝs0d + K0¹W
2ĉs0dd]zŜ

s0d + S ]f

]ĉ
sĉs0d,Ŝs0dd − Kc¹W

2ĉs0d

− K0¹W
2Ŝs0dD]zĉ

s0d, s58d

]jp = − s¹W 2Ŝs0d + K0¹W
2ĉs0dd]jŜ

s0d + S ]f

]ĉ
sĉs0d,Ŝs0dd − Kc¹W

2ĉs0d

− K0¹W
2Ŝs0dD]jĉ

s0d, s59d

m1
]Ŝs0d

]t
= −

]f

]Ŝ
sĉs0d,Ŝs0dd + ¹W 2Ŝs0d + K0¹W

2ĉs0d, s60d

]ĉs0d

]t
= Gc¹W

2S ]f

]ĉ
sĉs0d,Ŝs0dd − Kc¹W

2ĉs0d − K0¹W
2Ŝs0dD . s61d

Equationss60d and s61d constitute the model C in the Ho-
henberg and Halperin classification on critical dynamics
f27g.

We consider first an equilibrium planar nematic-isotropic
interface perpendicular to thej axis. The horizontal momen-
tum equations58d is satisfied identically and the remaining
equations give

]jp0 = − sdj
2Ŝ0

s0d + K0dj
2ĉ0

s0dd]jS0
s0d + S ]f

]ĉ
sĉ0

s0d,Ŝ0
s0dd − Kcdj

2ĉ0
s0d

− K0dj
2Ŝ0

s0dD]jĉ0
s0d, s62d

dj
2Ŝ0

s0d + K0dj
2ĉ0

s0d =
]f

]Ŝ
sĉ0

s0d,Ŝ0
s0dd, s63d

Kcdj
2ĉ0

s0d + K0dj
2Ŝ0

s0d =
]f

]ĉ
sĉ0

s0d,Ŝ0
s0dd − m, s64d

where the subscript 0 refers to the equilibrium interface. We
have integrated the Cahn-Hilliard equations61d twice and
employed the far-field condition thatc is bounded. The quan-
tity m is the chemical potential, i.e., the Lagrange multiplier
that ensures the conservation of the non-nematic quantity.

Equations62d allows us to calculate the pressure field, and
Eqs. s63d and s64d are the Euler-Lagrange equations which
minimize the free-energy density; they have been studied in
Sec. II B.

It is important to note that the interfacial tensiong which
appears in the outer region dispersion relations52d as a pa-
rameter introduced by the Laplace laws51d is now calculated

from the inner region profiles of the order parameters by Eq.
s17d. In the following, we shall use only the phase diagram
plotted in Fig. 1sad and the corresponding interfacial tension
sthe continuous line in Fig. 2d to obtain the dispersion rela-
tion.

To obtain the leading-order dispersion relation in the inner
region in the absence of hydrodynamics degrees of freedom,
we impose small periodic perturbations to the interface in the
z direction with wave vectork,

ĉs0dsz,j,td = ĉ0
s0dsjd + ACsjdexpsikz − Vtd,

Ŝs0dsz,j,td = Ŝ0
s0dsjd + ASsjdexpsikz − Vtd, s65d

where the amplitudeA is small. Substituting these forms into
Eqs.s63d and s64d, and linearizing inA, gives

m1VS = − ¹W 2S − K0¹W
2C +

]2sDgd

]Ŝ2
sĉ0

s0d,Ŝ0
s0ddS

+
]2sDgd

]ĉ]Ŝ
sĉ0

s0d,Ŝ0
s0ddC, s66d

VC = Gc¹W
2FKc¹W

2C + K0¹W
2S −

]2sDgd
]ĉ2 sĉ0

s0d,Ŝ0
s0ddC

−
]2sDgd

]Ŝ]ĉ
sŜ0

s0d,ĉ0
s0ddSG , s67d

where¹W 2=dj
2−k2. For a discussion of the independent eigen-

values corresponding to Cahn-Hilliard and time-dependent
Ginzburg-Landau equations, seef28,29g, respectively.

Since k=0 corresponds to a uniform translation of the
interface, we know thatVk=0=0 is the eigenvalue with the

eigenfunctionsdjĉ0
s0d and djŜ0

s0d fthis can be easily checked
by differentiating Eqs.s13d ands14d with respect tozg. Here
we concentrate only on these ground-state eigenfunctions,
which are the “slow modes.” In fact, a difficulty does appear
at k=0 for the conserved order parameter. Physically, the
interface in a conserved system cannot move freely using the
Goldstone mode as it could in the nonconserved one. Thus,
at k=0, the system can only satisfy conservation if it
“ripples” transversely to the interface. AtkÞ0, a perturba-
tion local to the interface of a form like the Goldstone mode
is possible, since the conservation is taken care of by the
fluctuation along the interface.

Multiplying Eq. s66d by djŜ0
s0d and Eq. s67d by djĉ0

s0d,
adding the two resulting equations, and using Eq.s16d and
the definition ofg given in Eq.s17d, we obtain the leading-
order dispersion relation in the inner region as

VSc=
gk2

m1E
−`

`

sdjŜ0
s0dd2dj + Gc

−1E
−`

`

djE
−`

`

dj8Gksj − j8dsdjĉ0
s0ddsdj8ĉ0

s0dd
, s68d
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where

Gksj − j8d =E
−`

` dq

2p

expfiqsj − j8dg
k2 + q2 =

exps− kuj − j8ud
2k

s69d

is the Green function for the operatork2−dj
2. In the limit k

→0, we can replaceGksj−j8d by its small-argument limit
1 /2k. This yields the leading-order dispersion relation in the
inner regionsin unscaled unitsd,

VSc=
gk2

m1E
−`

`

sdjŜ0
s0dd2dj + sciso − cnemd2/2Gck

. s70d

The pure nonconserved order parameter dispersion rela-
tion is obtained in the limitt=tNI =1, which gives ciso

=cnem andg=gS, wheregS=KSe−`
` sdjŜ0

s0dd2dj is the nematic-
isotropic interfacial tension for a pure nematogen, and

VS=
KS

m1
k2. s71d

We note that there is another time-dependent Ginzburg-
Landau mode corresponding to a squeezing of the interface
with the corresponding eigenvalueVS1=VS+3f0/2m1 f29g
separated by a gap from the ground state, which we do not
consider here.

The pure conserved order parameter dispersion relation is
obtained in the limitm1=0. This limit corresponds to freez-
ing of the rotational motion. It can be written as

Vc =
2gGck

3

sciso − cnemd2 . s72d

In the small-wavelength limitsregion A2 in Fig. 3d, the
relaxation of the nonconserved order parameter is the impor-
tant process and

VScsk → `d =
gk2

m1E
−`

`

sdjŜ0
s0dd2dj

, s73d

while in the large-wavelength limitsregionA1 in Fig. 3d, the
relaxation of the conserved parameter dominates andVSc is
given by Eq.s72d.

In Fig. 3 we have plotted, fort=0.5, the inner region
dispersion relation given by Eq.s70d as well as the particular
limits given by Eqs.s72d ands73d respectively. We have used
the experimental value form1=0.1P f13g, and the value of
Gc=1.5310−9 cm3 s/g was chosen to have the same velocity
unit for the both order parameterslS/ tS= lc/ tc. There is a
transition between these two regimes that takes place when
VScsk→`d=Vc, which gives

kc1
=

sciso − cnemd2

2Gcm1E
−`

`

sdjŜ0
s0dd2dj

, s74d

which for t=0.5 giveskc1
=2.83104 cm−1 with the corre-

sponding critical wavelengthlc1
.2.2 mm.

In view of the important role played in the dynamics by
the quantitykc1

, we attempt here to further interpret this
quantity. Equations74d can be rewritten as

kc1
=

1

2
sciso − cnemd2 1

Gcm1

KS

gS
=

1

2
sciso − cnemd2 tc

tS
lS
−1, s75d

wheretc= lS
2/Gcf0 is the relaxation time of the concentration,

and tS=3m1/2f0 is the relaxation time of the orientational
order parameter. To deduce these expressions, we have used
Eqs. s33d and s34d. In writing the first line in Eq.s75d, we

used also the definitiongS=KSe−`
` sdjŜ0

s0dd2dj of the nematic-
isotropic interfacial tension for a pure nematogen. The sec-
ond line of Eq.s75d is written as a ratio times the inverse of
the fundamental microscopic length in the problem, as dis-
cussed in Sec. III. The ratio involves two quantities, one
intrinsic—the ratio of the concentration to orientational re-
laxation times—and one extrinsic—the square of the concen-
tration difference.

In Fig. 4, we have plotted the phase diagram in the space
st ,kc1

d. In regionA1 sk,kc1
d, the conserved parameter relax-

ation is the important process, while in regionA2 the non-
conserved order parameter relaxation dominates. Neart=1,
the relaxation of the nonconserved order parameter is the
important process for all values ofk, except a very small
region neark=0. With decreasing temperature, the concen-
tration variation becomes more and more important, and the

FIG. 3. The inner regionsleading-orderd damping rate ResVScd
scontinuous curved as a function of the wave numberk, for t=0.5,
defining two distinct regimes. The nonconserved order parameter
dispersion relation Eq.s73d sdashed curved and conserved param-
eter dispersion relation Eq.s72d sdotted curved. RegionA1, relax-
ation of the concentration is the important process; regionA2, re-
laxation of the orientational order parameter dominates.
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relaxation of the conserved order parameter is dominant in a
larger region.

To sum up, we have obtained the leading-order dispersion
relation Eq.s52d in the outer regions B and C of dimension
lh. In this region, the interface is sharp and can be considered
as a surface of discontinuity. The physics is governed by the
dissipation due to shear flow and the dispersion relation is
the classical capillary wave dispersion relation at a sharp
interface between two fluids with the same densities and dif-
ferent viscosities.

In the inner region A of dimensionlS, without considering
the interaction between velocity and the order parameter re-
laxation, we have obtained the leading-order dispersion rela-
tion Eq.s68d. In this region, the interface is diffusive and the
relaxation of the order parameters is the dominant process.

The important point here is that both the leading-order
solutions for the eigenvalues in the inner and outer regions
are approximations of the same eigenvalue problem given by
Eqs. s36d–s40d. Therefore, in the transition region between
the inner and outer layers, the two expansions must give the
same result. The next step is to combine them into a single
expression by matching these two asymptotic expansions.

V. GENERAL DISPERSION RELATION

Now, we consider the interaction between hydrodynamics
and relaxation of the order parameters. For details of the
method, we refer the reader to our earlier paperf3g. We
perturb the base state as follows:

ûs0dsz,j,td = 0 +AÛsjdexpsikx − Vtd,

ŵs0dsz,j,td = 0 +AŴsjdexpsikx − Vtd,

ps0dsz,j,td = p0sjd + APsjdexpsikx − Vtd. s76d

Substituting these forms and Eqs.s65d into Eqs.

s53d–s57d, linearizing inA, and eliminatingÛ andP, gives

sr̃V − hk2dŴ= S r̃V

k2 − 3hDdj
2Ŵ+

2h

k2 dj
4Ŵ− H1sS,CddjŜ0

s0d

− H2sS,Cddjĉ0
s0d, s77d

m1VS = H1sS,Cd + m1ŴdjŜ0
s0d, s78d

V − Ŵdjĉ0

G̃c

E
−`

`

dj8Gksj − j8dCsj8d = H2sS,Cd, s79d

whereh=hN for j,0 andh=hI for j.0 and

H1sS,Cd = − ¹W 2S − K0¹W
2C +

]2sDgd
]S2 sS0,c0dS

+
]2sDgd
]c]S

sS0,c0dC,

H2sS,Cd = − Kc¹W
2C − K0¹W

2S +
]2sDgd

]c2 sS0,c0dC

+
]2sDgd
]S]c

sS0,c0dS.

Integrating Eq.s77d over all j, multiplying Eq. s78d by
djS0

s0d and Eq.s79d by djc0
s0d, and integrating, using Eqs.s17d

and s68d, the following result is obtained:

sr̃V − hk2dE
−`

`

Ŵdj +
V

VSc
gk2

= m1E
−`

`

ŴsjdsdjŜ0
s0dd2dj + G̃c

−1E
−`

`

dj

3E
−`

`

dj8ŴsjdGksj − j8dCsj8dsdjĉ0
s0dd2. s80d

Using the matching condition,

lim
j→±`

Ŵsjd =
1

e
lim

z→±0
Ws0dszd, s81d

Eq. s80d can be rewritten as

srV − hk2dE
−`

`

Ws0ddz+
V

VSc
gk2

= Ws0ds0dFm1E
−`

`

sdjŜ0
s0dd2dj + Gc

−1E
−`

`

dj

3E
−`

`

dj8Gksj − j8dCsj8dsdj
s0dĉ0d2G . s82d

Using Eqs.s45d–s50d, the continuity of horizontal velocity at
the interface, and the small-argument limit 1 /2k of the Green
function, we obtain the generalized dispersion relation, in
unscaled units,

FIG. 4. The phase diagramst ,kc1
d. RegionA1, relaxation of the

concentration is the important process; regionA2, relaxation of the
orientational order parameter is dominant.
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VsV − VScd =

m1E
−`

`

sdjŜ0
s0dd2dj + lSsciso − cnemdE

−`

`

sdjĉ0
s0dd2dj/2kGc

m1E
−`

`

sdjŜ0
s0dd2dj + sciso − cnemd2/2kGc

Vh
2 , s83d

whereVSc is the leading-order dispersion relation in the in-
ner region Eq.s70d and Vh is the leading order dispersion
relation in the outer region Eq.s52d.

The real part of the solution of Eq.s83d and its asymptotic
limits given by Eqs.s52d ands70d are drawn in Fig. 5. Three
regions can be clearly distinguished. In the short-wavelength
limit sregion A in Fig. 5d, the interface is diffuse and the
relaxation of the order parameters is the dominant process.
The dispersion relation is given by Eq.s70d sdashed curve in
Fig. 5d. We note that in region A, the inner region dispersion
relation has its asymptotic form given by Eq.s73d ssee Fig.
3d, meaning that the relaxation of the nonconserved order
parameter is dominant.

In the long-wavelength limit, the viscous damping process
in the outer region dominates and the corresponding disper-
sion relation is given by Eq.s52d sdotted curve in Fig. 5d.
The transition between these two regions takes place when
ResVhd=ResVScd, which gives fort=0.5 the critical wave
numberkc2

.2.23104 cm−1 and the corresponding critical
wavelengthlc2

.2.9 mm. Two regions can be further distin-
guished in the hydrodynamics limit. The regionB1 corre-
sponds tok,k* .1 cm−1, the damping process dominates,
and the interface mixture behaves as an interface between
two isotropic fluids. Finally, the intermediate regionB2 cor-
responds tok* ,k,kc2

. In this range of the wave numbers,
the relaxation of the conserved order parameter plays an im-
portant role and cannot be ruled out.

The slope discontinuities of the two curves in Fig. 5 indi-
cate the points where the propagating components cancel

fImsVd=0g, i.e., a transition between a week damping re-
gime whereuV0u@hk2/r and a strong damping one where
uV0u!hk2/r. The concentration variation induces a decrease
of the wave number corresponding to the transition between
these two regimessin the pure nematic system the transition
takes place atk.10 cm−1, while in the mixture the transition
takes place atk=k*d.

The phase diagram in the spacest ,kc2
d is plotted in Fig. 6.

In region B2 sk,kc2
d hydrodynamics is important, while in

region A sk.kc2
d the relaxation of the nonconserved order

parameter and concentration dominate. We note that for a
pure nematic system, the transition between regionsB2 and A
takes place atkc2

.9.53103 cm−1. The second region ex-
tends with decreasing temperature and consequently with in-
creasing concentration variation, but the variation is very
low.

VI. CONCLUSIONS

In this paper, we have examined surface modes at the
nematic-isotropic interface in thermotropic nematic–non-
nematic mixtures.

We have used a free-energy density modelfsc,Qabd as a
sum of two terms. The first term is the free-energy density of
the isotropic mixing for the two components Eq.s4d of Flory
type. The second term is a generalized form of the
Landau–de Gennes free-energy density in which we have
included the coupling betweenc andQab from microscopic
considerations Eq.s5d. The two representative phase dia-

FIG. 5. The damping rate ResVd as a function ofk for t=0.5.
The general dispersion relation Eq.s83d scontinuous curved, the
inner region dispersion relation Eq.s70d sdashed lined, and the outer
region dispersion relation Eq.s52d sdotted curved.

FIG. 6. Thest ,kc2
d phase diagram. RegionB2, hydrodynamics

is dominant; regionA, the relaxation of the orientational order pa-
rameter and concentration govern the physics.
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grams generated by this form of the free energy were pre-
sented in Fig. 1.

We have considered a planar nematic-isotropic interface
in equilibrium. Minimizing the free-energy functional, we
have obtained the Euler-Lagrange equation for the equilib-
rium profiles of the order parameters and the interfacial ten-
sion for the two phase diagrams presented. We mention that
this interface constitutes the base state in the inner region of
the dynamical system.

To explore the dynamics of this system, we have supple-
mented the Hess-Olmsted-Goldbart-Qian-Sheng model for
the orientational, nonconserved, order parameter with the
Cahn-Hilliard equation for the conserved parameter, the con-
centration. We have assumed an isothermal system, charac-
terized by a scalar order parameterS. In this way, we have
considered an isotropic interfacial tension, i.e., independent
of the director orientation at the interface and neglected all
coupling between the director and the hydrodynamic flow. In
this model, both phases have the same density, but different
viscosities. We have considered the equilibrium planar
nematic-isotropic interface as the base state of the system.
The front was then perturbed with a small-amplitude mono-
chromatic plane wave and the linear stability of the front was
examined.

In the outer region, in the leading order, the key result is
Eq. s52d. This is the classical dispersion relation for the
damping of capillary waves.

In the inner region, ignoring the interaction between the
hydrodynamics and the order parameter dynamics, in the
leading order, the problem is model C in the Hohenberg and
Halperin classification. This couples a nonconserved dynam-
ics governed by the time-dependent Ginzburg-Landau equa-
tion and a conserved dynamics described by the Cahn-
Hilliard equation. In this approximation, we have obtained
the dispersion relation in the inner region Eq.s68d, which we
have plotted in Fig. 3. Two distinct regions can be distin-
guished. In the small-wavelength limit, fork.kc1

, the relax-
ation of the nonconserved order parameter is the important
process. In the long-wavelength limit, fork,kc1

, the relax-
ation of the conserved parameter becomes dominant. So, ig-
noring hydrodynamics degrees of freedom, the addition of a
conserved parameter has a profound effect on the dynamics
at long wavelengths. The critical wave numberkc1

which
defines the transition between these two regions was ob-

tainedfEqs.s74d ands75dg and plotted in Fig. 4 as a function
of temperature.

Using the method of matching asymptotic expansions, we
have obtained the generalized dispersion relation Eq.s83d.
The corresponding relaxation rate is plotted in Fig. 5. Three
distinct regions can be distinguished.sid At very low values
of the wave numberk,k* , in regionB1, the nematic behaves
as an isotropic fluid and the dissipation due to shear flow
dominates;sii d at intermediate values ofk* ,k,kc2

, in re-
gion B2, the influence of the conserved parameter is impor-
tant; and finallysiii d at large values ofk.kc2

, in region A,
the relaxation of the nonconserved order parameter governs
the physics. In a pure nematogenic system, also three regions
must be clearly distinguishedssee Fig. 1 in Ref.f4gd. In the
long-wavelength limit, the dissipation due to shear flow
dominates; at intermediate values of wavelength curvature,
elasticity and backflow effects play an important role; and
finally at small wavelengths the relaxation of the noncon-
served order parameter is important. Therefore, even though
the two figures look similar, the differences are significant.

We mention that the calculation is simplified as it ne-
glected the coupling between the nematic director and the
hydrodynamics flow, as well as the anchoring effect of the
director at the interface. We did not use the complete set of
Leslie viscosities. Nevertheless, it seems likely that much of
the physics will be retained in the general case. However,
particularly when the boundary condition at the interface is
planar, or when there are anchoring transitions as one goes
along the phase coexistence line, there may be interesting
new extra physics in the dynamics.

The method we have used will also permit the inclusion
of the coupling between interface oscillations, the director
field, and the velocity, by including backflow effects. A fur-
ther complication involves addition of the density. This will
allow the study to include interfaces in lyotropic liquid crys-
tals.
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