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We develop a theory for surface modes at the nematic-isotropic interface in thermotropic nematogen—non-
nematogen mixtures. We employ the dynamical generalization of the Landau—-de Gennes model for the orien-
tational(nonconservedorder parameter, coupled with the Cahn-Hilliard equation for concentrat@rserved
parameter, and include hydrodynamic degrees of freedom. The theory uses a generalized form of the
Landau—-de Gennes free-energy density to include the coupling between the concentration of the non-
nematogen fluid and the orientational order parameter. Two representative phase diagrams are shown. The
method of matched asymptotic expansions is used to obtain a generalized dispersion relation. Further analysis
is made in particular cases. Orientational order parameter relaxation dominates in the short-wavelength limit,
while in the long-wavelength limit viscous damping processes become important. There is an intermediate
region (depending on the temperatiii@ which the interaction between conserved parameter dynamics and
hydrodynamics is important.
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[. INTRODUCTION to purely diffusive surface waves whose mode structure is
Most liquid crystals used in technological applications,dentical to that of the bulk diffusive modes found in the
such as electro-optical devic€s], are mixtures. Often we time-dependent Ginzburg-Landau equaiigh However, for
have to consider inhomogeneous mixtures between thermdl€ Same problem, the sharp interface model yields modified
tropic nematogen and a non-nematogen. The dynamics G@Pillary waves, with a large propagating component.
such materials involves treating not only the orientational " the two previous papers,4], we have examined this

order but also the concentration of nematogen. However, in g(r)%?lirgef&r _ia}hselr?v[\:l)(l)er g%?;e(r)? \I,?evv\\,/mgt],; r[lgeereenV\rl:’i(‘?ocr)]r(]:Ii)I/e(CJI) nbe
dynamical theory these two—coupled—variables have a dif- P : P y

ferent status. Orientational order isianconservearder pa- analyzing the surface eigenmodes of the nematic-isotropic
' e p interface within the Hess-Olmsted-Goldbart-Qian-Sheng
rameter and normally relaxes diffusively. By contrast, con-

ion i dord d rel phenomenological mod&b—7] of nematogenic fluids. 1f3],
centration Is aconservedorder parameter, and relaxes i \yas assumed that the nematic director is fixed in space and

through an induced current. The coupling of a conserveqiime, so that the relevant physics was only described by a
order parameter to a nonconserved order parameter, ev@@alar order parameter. It turns out that this assumption is
when the latter is in some sense the driving force in theynly valid if the interfacial tension is isotropic. This required
system, thus has profound effects on the dynamics. A subseiat (a) the surface tension does not depend on the director
of these effects is the subject of this paper. orientation at the interface, aril) (less obviouslybackflow

In these systems, a biphasic region between the isotropice., coupling between the flow and the director, can be ne-
and the nematic phases appears below the nematic-isotrogjtected. A general dispersion relation was then obtained,
transition temperature of the pure nematogen. When the sy$faving as particular cases two different regimes. In the short-
tem is thermally quenched from the stable isotropic phase&avelength limit, the interface is diffusive and the relaxation
into the biphasic region, fluctuations of concentration and obf the order parameter is the dominant process. By contrast,
orientational order occur, and isotropic or nematic dropletsn the long-wavelength limit, the interface is sharp and the
can appear. By whatever early stage process, e.g. nucleati@iscous damping process dominates. For pentylcyanobiphe-
or spinodal decomposition, domain walls—otherwise knowmyl (5CB), the transition between these two regimes takes
as interfaces—soon form. place at\.=5 um, which should be visible experimentally.

In this paper, we analyze the problem of damping of cap- In [4], we reconsidered the problem in a more general
illary waves at these interfaces. In the case of a pure nenway, taking into account both the hydrodynamic coupling
atogen compound, very different dispersion relations fowith the director and the surface tension anisotropy, which
waves at the nematic-isotropic interface can be derived dezan be as large as 20% at the nematic-isotropic interface. As
pending on the way the calculations are done. More prea result, interface oscillations couple with the director field
cisely, the diffuse interface model, solved by assuming thavia hydrodynamic flow and backflow effects. In the general
the order parameter and velocity fields do not interact, leaddispersion relation, three distinct regions can be distin-
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guished:(i) at very large values ok (\>\; =6 cm), the ~ S=1ina fully oriented nematic phase. In this paper, we shall
dissipation due to shear flow dominates and the nematic beimplify by supposingi to be fixed in space and time, and
haves as a viscous isotropic fluidi;)) at intermediate values the relevant physics is given by the scalar order parameter
of N (\¢,=1X10*em<A<\.), curvature elasticity and S(r,t). We note that this is an idealization which is in general
backflow effects become important; and fina(lif) at low  not true during the relaxation, and even not true close to the
values ofA (\ <)), the relaxation of the order parameter interface. However, previous studi¢g] suggest that the
governs the physics. The numerical Va"ll%lsand?\cz corre-  Slowest rela}xatlon modes_ approxmately fu_lflll this cpndltlon
spond to 5CB. The influence of the anisotropy of the surfacdvhen the director anchoring is h.omeotropllc at the interface.
tension and of the hydrodynamic coupling between the flow/n @ later work, we shall relax this approximation.
and the director has a fairly small effect-20%) on the  Within the mesoscopic approach, the free-energy func-
relaxation rate. By contrast, the influence on the phase véional is given by
locity is very important in the second region, in which a new 1 -
propagating mode is observed. The effect of the rotational F[C,Qz]= {f(C,Qaﬁ) + EKC(VC)2+ Ko(94€)(9Qup)
viscosity and the associated backflow effect are much more
important than that of the anchoring energy. 1 , 1 5

In this paper, we extend this analysis to the nematic- * 5L1(9,Qap) ™+ SL20:Q0ap)" |V, ()
isotropic  interface in thermotropic nematogen—non-
nematogen mixtures. The new physics involves couplingvhere K. and K, are phenomenological coefficients. The
time-dependent Ginzburg-Landau and Cahn-Hilliard equaglastic constant&; and L, are related to the Frank-Oseen
tions [8] with hydrodynamic degrees of freedom. A similar elastic constants by the relation=K;=9S(L;+L,/2)/2
model has been used to study the nematic-isotropic interfacandK,=9S5L,/2, whereS, is the bulk nematic order param-
in a polymer-nematic mixturf9] and the behavior of a sus- eter. In the so-called “one-constant approximatioi; =K,
pension of rigid rod particles in shear fldgdQ] in the frame- =K3=9Kg/2) andS,=1, L;=KgandL,=0, values which we
work of the Doi model11]. consider in this paper. The bulk free-energy denBity Q)

The unperturbed or base state of the system is a planaonsists of two parts,
nematic-isotropic interface in equilibrium. This condition
fixes its temperature. To simplify, we further assume that the F(€,Qap) = finix(C) + Tren{C, Qap) - 3)

temperature is uniform. There is thus no temperature gradi- The first term is the free-energy density of the isotropic
ent perpendlcular to the interface. Due to thermal ﬂUCtuamixing for the two Components7 which governs phase sepa-

tions, small amplitude monochromatic waves develop at theation. According to the Flory theory, the free-energy density
interface. We use a linear stability analysis of the equationgs given by[14]
to obtain their dispersion relation.

The paper is organized as follows. In the next section, we ¢ (c) = N_kBT[(l —o)In(L-c)+clnc+xc(l -0)], (4)
introduce the free energy of a nonuniform thermotropic m \Y ’
nematogen—non-nematogen mixture system. We present tQvenerek is the Boltzmann constant, is the absolute tem-
static phase diagrams and derive the interfacial tension b’%eraturg andy=(Uo/keT) is the Flor'y-Huggins interaction

tween coexisting phases. In Sec. lil, we give the governin arameter related to isotropic interaction between unlike mo-
equations. We then present in Sec. IV the dispersion relatio . P
ecular specie$l4].

corresponding to the two regions defined by the typical The second term in E@3) is the Landau—de Gennes free-

lengths in the problem. The general dispersion relation and . . . . .
numerical results are presented in Sec. V. In Sec. VI, w nergy density, which governs the isotropic-nematic phase
I e fransition,

draw some conclusions and present directions for futur
work. frem( €, Qap) = (1 —c{alT = (1 -0)T ]1QupQpa

Il. FREE ENERGY - BQusQpQya+ C(QupQpa)?-  (5)

The coupling betweer and Q,z in Eq. (5) results from

teréggF‘gm:ggﬁ'scerciz]agcr;r?]()e':ér;zn;gt:n?::gg;iéfvggar:gmi_croscopic considerations. According to Humphries-James-
y P Paraf;khurst theory on a binary mixtufé5], the orientational

eter. The conseryed parameter is the cpncentrammllN free energy per molecule in a mean-field approximation is
of the non-nematic component, whexg is the number of given by

molecules of non-nematic component ahthe total number
of molecules. The nonconserved parameter is the orienta- (1-c)%ug

+(1-c¢) J f(B)In f(B)sin Bdg,

tional nematic order paramet@,;. The orientational order fINkgT = 2

parameter is a traceless symmetric second rank tensor with

components given bj12,13 (6)
Qus= S(Snanﬁ— 5%8)/2, 1) where the strength of the molecular field is determined by

the molecular anisotropy, g8 is the angle between the sym-
where the unit vecton is the nematic director an8 is the  metry axis of thgcylindrically symmetri¢ molecule and the
usual scalar order paramet8r0 in the isotropic liquid and director, andf(B) is the singlet orientational distribution
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function. The first term is the internal energy per molecule, "¢
while the second one represents the decrease of entropy dt
to the nematic ordering. The free energy given in @g.can
be compared with the Landau—de Gennes expansiéh
The consequence is that only tié term in Landau—de
Gennes free energy comes from the internal energy, while o6
the other terms result from the entropy expansion.

For a pure nematogen, using the fofy for Q,s, the
bulk free-energy density has the well-known form

0.8 -

w

0.4 -

f(S = ga(T—T*)SZ—ZBS3+%CS4, (7) 0.2

which describes a first-order nematic-isotropic phase transi-
tion. For T=Ty,=T +B?/24aC, the two phases—nematic
(Sher=B/6C) and isotropid Ss,=0)—coexist in equilibrium. @
T is the undercooling limit temperature of the isotropic
phase. 10 %

A. Phase diagrams 0.8

The calculation of static phase diagrams requires only the
bulk free-energy density. We now nondimensionalize the free 067
energy. The orientational order parameter is normalized with”
respect to its value at the transiti®* S/ S, Using the re- 0.4
duced temperature=(T-T")/(Ty,-T"). The dimensionless
free-energy density is now=f/f, where fo=B*/24°C3, 02
Omitting the bar notation, the nondimensional free-energy
density becomes

0.0 T

f(c,9=T[(1-¢c)n(l-c)+cinc+ xc(1-c)] (b) 00 . . 0.6

+(1-0[(r+ NS - 28+ 5], (8) | _ o
FIG. 1. Phase diagram for nematic—non-nematic binary mixture.

where I'=NkgT/Vf, and A\=24aCT /B2 Now, for a pure The solid curve refers to the binodal, the dotted line shows the
nematogen the phase-transition temperaturg,is1 and the hidden nematic-isotropic phase transition, and the dashed-dotted
corresponding value of the nematic orientational order paline is the spinodali@ I'=N=1 andy=1. Belowr=7y =1, a region
rameter isS,en=1. of two-phase coexistence exists between isotropic and nematic

The equilibrium conditions can be written Ek7] phasegl+N). (b) x=2.5 and the other parameters are the same as
in (a). At 7=0.906 there is a triple poinfTP) where two isotropic
phasegl;+1,) and a nematic phagél) can simultaneously coexist.

c

Ag(c,9) =0, %(C,S)ZO, %(C,S) =0, (9
¢ where the isotropic and nematic branches of the Gibbs free-
where Ag(c,S)=f(c,S)-f(Cis,0)—u(C—Cso) is the differ-  energy density are equal. The dashed-dotted lines are the
ence in Gibbs free-energy density between the two phasespinodals. Figure () shows the phase diagram fér=\
and u=(df/dc)(cis, 0) is the chemical potential. =x=1. For this value of the Flory-Huggins interaction pa-
We now introduce two representative phase diagrams forameter, the free-energy densitic,0) Eq. (8) does not pre-
nematic—non-nematic mixture, plotted on the temperaturedict a spinodal decomposition in the isotropic regidhus
concentration plane. The coexistence cur¢esodalg in  there is only one isotropic phase in the phase diayr&or
these phase diagrams were calculated numerically, by findinggmperatures beloy, (7y=1), there exists a two-phase
pairs of states with equal chemical potentials and pressuresoexistence region between an isotropic and a nematic phase
This is equivalent to minimization akg with respect to the (1+N). On decreasing the temperatyrete that the under-
nonconserved order parametfthe third equation in Egs. cooling limit temperature for isotropic phadé in the pure
(9)], followed by a common tangent to a pair of points on thenematogen corresponds #0=0), the biphasic region broad-
curve f(c) [17] [the first two equations in Eqg9)]. The  ens. Within the biphasic region, there are two different meta-
spinodal line, which separates metastable from unstablstable regions: an isotropic metastalflen) and a nematic
compositions, is given by the inflection point of the Gibbs metastabléNm) region, as well as an unstable region of the
free-energy density?Ag/ 9c?=0). nematic(Nu).
The corresponding phase diagrams are plotted in Fig. 1. For a higher value of the Flory-Huggins interaction pa-
The solid curves refer to the binodal and the dotted linesameter, the phase diagram develops a triple point. Figure
shows the hidden first-order nematic-isotropic transition,1(b) shows the phase diagram fbr=A=1 and y=2.5. For
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this value ofy, there is aclassical phase separation evenin 4]
the isotropic regiorn(thus there are two isotropic phasks
andl,); 11 (I,) refers to the isotropic liquid phase of higher
(lower) concentration on the phase diagram. The arrow 30—
shows the critical point for thé;+1, phase separation. At
7=0.906, there is a triple poiffP) where the two isotropic
phases and the nematic phase can simultaneously coexis.
There are two spinoddlinstablg regions in the phase dia-
gram, i.e., an isotropic spinodal regidohyu) and a nematic
spinodal region(Nu), which are separated by the hidden
nematic-isotropic transition line. Similar phase diagrams
have been obtained by other workers for polymeric-liquid-
crystals mixturg 18].

In both phase diagrams, we can distinguish two different T 1 1 T \
regions. Near=1, the concentration jump at the transition is 00 02 a4, 06 08 10
very small, so that the important effect results from the non-
conserved order parameter variation. On decreasing tempera- FIG. 2. Interfacia! tensiolly) between the isotropic and nematic
ture, the concentration jump at the transition is larger and th@hases plotted against the reduced temperatoreThe reduced

variation of the conserved parameter becomes important. interfacial tensiony/ ysis normalized by the interfacial tensidg)
for the isotropic-nematic interface of the pure nematogen. Solid

line: '=n=x=1. Dashed line'=A=1 andy=2.5.

¥

20—

b4

B. Interfacial tension

We consider a planar nematic-isotropic interface of area Ag
A in equilibrium in the nematic—-non-nematic mixture and d§$)+ K0d§c0: -, (14
take thez axis perpendicular to the interface. The free-energy JS
functional (2) can be expressed as with the following boundary conditions:
Flc,S]= A f dz[f(c,S) + TR (0,02 + Ko(20)(8,9) (c,S = {(C”e’“ Shem) 852 =<, (15)
o 2 (Cisn 0) asz— oo,

1 ) and d,c(0) =d,S(+)=0.
+ EKS(azS) : (10) Multiplying Eg. (13) by d,c and Eq.(14) by d,S, adding
the resulting equations, and then integrating once with re-
We rewrite Eq.(10) in dimensionless form by measuring spect toz, we obtain the condition for a planar equilibrium
length in unit 0f|s=(Kﬁem/fo)l/2 and introducing the di- interface solution,

mensionless quantitielSC:Kc/Kﬁem Ko=Ko/KsSem and

1 1
F=F/Af,ls. Omitting the bar notation, Eq10) can be re- Ag= EKc(dZC)2+ Ko(d,S)(d,c) + E(sz)z. (16)
written as
" 1 Using this expression to eliminate the gradient terms from
Flc,S] :J dz[f(c,S) : EKc(<9zC)2+ Ko(3,0)(3,9) Eq. (12), the interfacial tension becomes

1 =2 f Ag(c(2),S(2))dz. (17
+ 5(328)2] . (11) -
To perform numerical calculations, we have taken values
The interfacial tensiory is defined as the difference, per for the bulk Landau-de Gennes free-energy parameters
unit area of the interface, between the free energy of thevhich correspond to 5CBa=3.3X 10° erg/K cn?, B=8.9
system and that of the two phases if each were uniform anc 10° erg/cn?, andC=5.6x 10 erg/cn? [19], which gives
isolated. Hence in nondimensional form it can be written asf,=8.6x 10 erg/cn¥, and the typical experimental values
" 1 1 given in the literature:Kg=2.1xX10" dyn, K.=K,=8.4
y= f dz{Ag(c, 9 + =K (d,0)2 + Ko(d,S)(dye) + =(d,92|. X 107°dyn, and ys=1x 107 erg/cnt (ys is the nematic-
2 2 isotropic interfacial tension for a pure nematogen
(12) [13,18,20,2] By numerically solving the Euler-Lagrange
equationg13) and(14), we calculate the equilibrium profiles
Minimizing the functional in Eq(12) with respect ta(2) c(z) andS(z) (which are very close to the well-known hyper-
andS(z), we obtain the corresponding Euler-Lagrange equabolic tangent profilesand using Eq(17) the interfacial ten-
tions for the equilibrium profiles of the order parameters, sion for the nematic-isotropic equilibrium interface.
In Fig. 2, we plot the interfacial tensiof between the
ch§Co+ Kod§So= @’ (13) isotropic and nematic phases, as a function of the reduced
ac temperaturer, for both phase diagrams presented in Fig. 1.

—00
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The reduced interfacial tensiof/ ys is normalized by the dQus

interfacial tensionys of an isotropic-nematic interface of the Nep = at T QuuWup = WoQup (25)

pure nematogen at= 7y, =1. In the first caséfor y=1, con-

tinuous line in Fig. 2, the interfacial tension is practically is the time rate of change of the order parameter with respect
constant near=1 and then increases rapidly with decreasingto the background fluid angular velocity, sometimes known
temperature. Fox=2.5 (dashed ling the interfacial tension as corotational time derivative. The quantitigs 5,4, Bs, Bs,

has a jump at critical point=7,=0.906 because the nematic- w3, and u,=Bs—Bs are viscous coefficients which can be

isotropic interface changes. expressed in terms of the Leslie coefficiefits) and the
value of the order paramete® [7], while Aaﬁzé(aavﬁ
Ill. EQUATIONS OF MOTION +3dgv) and W,5=3(d,05—dgv,) are, respectively, the sym-

metric and antisymmetric parts of the velocity gradient ten-
We assume that the heat diffusion is sufficiently rapid ingqr.
order that the system remains at thermal equilibrium. We The concentration equation of motion takes the Cahn-
therefore ignore the equation for energy conservation angjlliard form [8]
assume an isothermal system at a specified temperature. We
further assume the fluid is incompressible. Within these ap- d_C= -V .J=T.V2 (26)
proximations, the equations of motion for the velocity and dt ot M

the nematic order parameter becofbe? . :
P [Be7] where the transport coefficieht, is assumed to be constant

9.0,=0, (18) and the chemical potential is given by

M= (27)
P =y P, ol ) + Oyt (19 %

The diffusive current is)l=-T'.-Vu. The complete dynamics

is thus describe by Eq$18)—(20) and (26). The dynamical
0=hap+Nop=NSup = €apyhys (20 equations of motion for other complex fluids have the same
theoretical structure: equations of motion for the conserved
quantities and the broken-symmetry or flow-induced struc-
tural (nonconservedorder parametefanalogous toQ,),

and a constitutive relation for the stress as a function of

wherep is the densityp is the pressure, while and\,, are
the Lagrange multipliers associated to condition@¥6 and
Qep=Qgpa respectively. In this expression, 8, andy run
from 1 to 3, summation over repeated indices is implied, "

composition and order parametér7].

Eaﬁ_V |s_the Levtclwta ser]bol,_andj/dt 'i the_total time Let us now define the three typical lengths of the problem.
derivative/dt+uv-V. The distortion stress* [which results (i) The first length is related to the order parameter itself.

from molecular displacement keeping the orientation fixedy strongly varies across the interface over a typical distance
F—1"+U(F), Qup(N) — Qup(") =Qqp(N] and the elastic Mo- known as the microscopic  correlation  lengths
lecular fieldh [which results directly from the virtual orien- =(KsSerf fo) V2 that for 5CB has the valueX$10°® cm. This
tational distortionQ,4(f) — Q,4()] are obtained in standard |ength gives the typical width of the order parameter profile
manner as within the interface.

(ii) The second microscopic length is related to the con-

o = - iﬁ Q (21)  centration variation inside the interfates K./ fo)*'? that for
ap B=<yp 5
(3,Qy,) 5CB has the value 8 1075 cm.
(iii ) The third (macroscopiglength is associated with the
Nep= = F/8Q 5. (22) vorticity, i.e., with the flow induced by the motion of the

interface. The corresponding physics is described by the gen-
The viscous stress tensot and the viscous molecular field eralized Navier-Stokes equati¢8), which can be considered
h* are introduced through the consideration of entropy proin the thin interface limit. The important physical parameters
duction in a dissipative flowing nematic. They are given by aare the capillary force, associated with the interfacial tension
tensorial generalization of the Ericksen-Leslie theoryy, the viscous dissipation, associated with viscosity coeffi-

[22,23,1, cient 7, and the fluid inertia, governed by the mass density
) From these three quantities, we can construct only one length
o= B1QupQuiPrur T BaPapt BsQupPupt BeQpuPrua |,,= 7% py. For 5CB,p=1 g/cn¥, y=1x10"2 erg/cn?, and
1 7=0.1P, so thatl,,=1 cm. This length separates the inertial
+ EMZNaB—,ulQaMNMg+M1Qﬁ,LNW, (23)  from the viscous regimes; the corresponding value of the

Reynolds number is unit{for details, se¢4]).
In the following, we shall use,=7*/py? as unit time,
= 1 A 4 N 24 which is the typical relaxation time of a perturbation of size
ap™ " SHap ™ MaNap: (24) I, and for 5CB has the value 10 s. In the following, the ratio
e=lg/l,,=Ic/1,=10"° will constitute the small parameter of
where the theory.
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We consider a two-dimensional flow with horizontal and
vertical velocity componenta andw in the x and z direc-
tions, respectively, and we simplify the expressi@® and
(24) by assuming that

B1=PBs=Bs=0, PB,=28,

which giveu,=0[7]. In terms of Leslie coefficients;, these
relations are equivalent to

(28)

v =as=ag=0, —a,=a3=a=9%u,/4,

2B.
(29)

ag=Ps=

Within these approximations, the coefficighitdescribes the
dissipation due to shear flogghear viscosity while u, is
associated to the standard rotational VviSCO9iy az—ap
=2a=9%u,/2.

Using these hypotheses and E¢B—(5), the basic Egs.
(18)—(20) and(26) take the following form:

0=du+d,w, (30
du - - -
Pg= ap+ V- (KV2S+KyV20)a,S
of o2 o2
+| — =K Vc-KyVeS)é,c, (31
Jc
dw _ _ &2 (K T2 o2
pdt ap+ nVw- (KV°S+KyV<c)d,S
of o2 o2
+| — -K.Vc-KyVS)a.c, (32
Jc
3,u1dS of ) )
SE1TY T L KV2S+ K V2 33
2 dt 4S ° 0 33
dc of
—=rvy < -KV%- KVZS) 34
dt (ac 0 (34

where n=(a+28)/2. This viscosity corresponds to the sec-
ond Miesowicz viscosityy, [13], i.e., to the viscosity of the
nematic phase when it is sheared parallel to the director.
We rewrite Egs.(30)—(34) in dimensionless forms by
measuring length in units df, and time in units ot,. We

use the same scaling as in Sec. Il A for the orientational
order parameter and for the free-energy density, and we in-

troduce the dimensionless quantities

—n, =P —_ 7
- p1 - ] 77_ ]
fot? fo t,fo
_ 3%, — t
, Te==LT.. 35
M= ot fozu‘l lfyf c (35

Omitting the bar notation in the following, we obtain

PHYSICAL REVIEW E71, 061706(2009

0=du+d,w, (36)
du =2 S22y ©2
P =P 7V2u- é(V?S+V2%)a,S

o ey -,

+ a—c—ezv c- €V2s|ac (37)
dw =2 S2c, ©2
ik V2w - €(V?S+V?c)d,S

I e, -,
+ %—GZV c- €V?S|oc (38)
ds  of - -
prg = gt EVIST eV, (39
dc 2 2
dt-rv %—ﬁc VeS|, (40)

where €2=13/12=12/12=15/12 with 15=(KoShen/ fo) 2

In what follows, we shall suppose that the stationary pla-
nar nematic-isotropic interfadee., the base state of the sys-
tem) is situated atz=0, such that the nematic lies in the
regionz<<0 and the isotropic phase in the regior 0. Thex
axis is taken in the direction of the wave vectorf the
perturbation along the interface. This is possible without loss
of generality, as the system is isotropic in thandy direc-
tions, i.e., neglecting the biaxiality of the nematic phase. In
this way, the wave numbés represents the modulus of the
two-dimensional wave vector in the plane of the interface.

IV. ASYMPTOTIC ANALYSIS FOR €<1

To obtain the dispersion relation, we use the method of
matched asymptotic expansiorf]. The method consists in
matching the solution obtained auterregions, where is of
the order unity, to that in amner regions, in whichz is
small. In our case, there are two outer regions B and C, of
dimensionl,, in which the dominant physics is hydrody-
namic: dissipation due to shear flow. These two regions are a
z——» deep nematic region and &a— +% deep isotropic
region. In the inner region A of dimensidg=I.=1I,, both
conserved and nonconserved order parameters vary rapidly.

We expand the solution in the outer regions as regular
perturbation series ie?,

=u9(x,2) + €u?(x,2) + O(%),
w=w(x,2) + Eéw?(x,2) + O(%,
c=c9(x,2) + €c?(x,2) + O(&),

S=99(x,2) + €S?(x,2) + O(€). (41)

In the inner region, we sef=x/e and {=z/e and write
similar expansions for the variablég/, &) =u(x,z), W(Z, &)

=w(x,2), &(¢,&)=c(x,2), andS(¢, &) =5(x,2).
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A. Outer regions: B and C nematic-isotropic interface, which can be takez=a® due to

Herec andS are constant in each phase. We find that, tot€ smallness of the amplitude of the oscillatida$,24.

all orders,(c,S) = (Coam Sher) for 2< 0 and(c, )= (Cigg, 0) for The;e F_:onditioq_s are as follovi®or details, se¢4]): .
z>0. The leading-order problem faf® andw'® in the outer (@), (i), and(ii : Thex andz components of the velocity
region of the nematic phase @< 0) is given by and the tangential components of the stress tensor must be

continuous.
0=0u® + g w©, (42) (iv) The jump of the normal component of the stress ten-
sor is given by the Laplace law,
(0) -
= =50+ 2O (43) A
dt o,AN) = o) = ﬁ (51)
pdv\[o) = 3,00 4 1 2O (44) After substituting solution$45)—(50) into the boundary con-
dt z N ’ ditions, we obtain the dispersion relation in leading order in

. ) . _ the outer region,
where py=(a+23)/2 is the shear viscosity of the nematic

phase. These equations have the same form in the outer re- ) k(12 +12) - 2k® 5

gion of the isotropic phase €z>0), but with a different 0= +m 05, (52)
shear viscosity coefficieny,=8. The density difference be- N NI

tween the isotropic and the nematic phase is usually VeryhereQ3=-k3/2p is the capillary wave dispersion relation
small, so that we can consider in a good approximation thafor ideal fluids. The quantityy is the interfacial tension. It
the two fluids have the same density. enters here as a parameter through Laplace’s v In the

Thus, the outer problem is equivalent to the Navier-Stokesnore generalized model discussed in this paper, it can be
equation for an interface between two fluids with the same:a|culated from the inner region solution.
density but with different viscosities, subject to the incom-
pre55|b|!|ty condltlor{25,26|. The_ solgtlon co)ries(g)o_ndlrlog) to B. Inner region A
the stationary planar interface is given bg? =w, =0,py
=const. To look for the solutions in the inner region, we rewrite
We now impose a small periodic sinusoidal perturbationEgs. (36)—40) in terms of inner variableg=x/e and ¢
to the interface of the forng, = ¢ explikx—Qt), where§ is =7/,
the vertical displacement of the interface with respect to its
equilibrium positionz=0. In our notationk is the wave vec- 0=90+daw, (53
tor (real numberand() is the angular frequency. The latter
quantity is generally a complex number whose real part gives 0 . R ~
the relaxation timer=1/Rg()) of the wave, and the imagi- P ==dp+ nV20 - (V2S+KV?0)a,S
nary part, the phase velocity,=1m(Q)/k. dt
For a nematic of large deptfiegion B: <0 <z<0), the aif ~ oo =~ oo
wavelike solutions of Eqs(42)—(44) are of the form(for + %_KCV C—-KoV7S)a.c, (54)
details, seg¢4))

0) — (i z { ; ~
Uy = (ikAE? - [ CheMexplikx — Qt), 45 div e e e
N ( N NN Z) Ii ) ( ) FE —_ agp + 7]V2W_ (VZS+ KOVZC)0§S
W = (kAuE? + ikCneM)explikx — Qt), (46) o
+ (? -K V% - KOVZS) I, (55)
P9 = p© + pOALE explikx — Q). (47) ¢
Similarly, in the isotropic phas@egion C: 0<z<), &S af
P2 v2gL kRov2s
ul? = (ikAe™?+1,Cie)explikx — Qt), (48) Mg = aé+V S+KeV<C, (56)
w9 = (- kA e 2+ ikC e D) explikx — Ot), (49) e 7
i FCV2<—A -K V% - K0V25> , (57)
p% = p + pOAE™ explikx - QY), (50) t o
wherely=k(1-pQ/ 7yk3) Y2 and |, =k(1-pQ/ kA2 where p=12p/fot2, Ke=Ko/KsRerm Ko=Ko/KsShem and T

Equations(45—50) correspond to the classical sharp- :t,,l“c/léfo.
interface approach, where it is assumed that the thickness The first step is to ignore the interaction between the ve-
of the inner region is zero. In this limit, the dispersion locity and the order parameters variations. In the leading
relation is determined by the boundary conditions at theorder, omitting the tilde signs, we obtain
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e om0 [T 2 <o
Ip=- (V280 +KV2e®)5,80 + (a—&(d@s@) ~K V%O
(58

_Kgf 2§<°>)a§é(°>,

. R S -
9 == (VS + KoV )9, S0 + <%(c<°),s<°>) -Kv%©

_Koez‘sw)agewa (59
9SO Gf e .
p— = - —(6©,89) + V259 + K V2O, (60)
A S
ac® o fof . .
e FCVZ(;(C(O)SO)) -K V%O - KOV2§°)>. (61)
(9

Equations(60) and (61) constitute the model C in the Ho-
henberg and Halperin classification on critical dynamics

[27].

PHYSICAL REVIEW E71, 061706(2009

from the inner region profiles of the order parameters by Eq.
(17). In the following, we shall use only the phase diagram
plotted in Fig. 1a) and the corresponding interfacial tension
(the continuous line in Fig.)2o obtain the dispersion rela-
tion.

To obtain the leading-order dispersion relation in the inner
region in the absence of hydrodynamics degrees of freedom,
we impose small periodic perturbations to the interface in the
{ direction with wave vectok,

2Oz, £ =eQ(¢) + AC(Hexplik{ - Q),

SO = V(&) + AS(&expliks - Q)

where the amplitudd is small. Substituting these forms into
Egs.(63) and(64), and linearizing inA, gives

(65)

We consider first an equilibrium planar nematic-isotropic

interface perpendicular to theaxis. The horizontal momen-
tum equation(58) is satisfied identically and the remaining

equations give

- . AP .
7¢po= = (dES” + KodZeg") .Sy + (%(C(()O)!%O)) - Kot

- eS8 2
~ R of R ~
250 + KodZel = (62,39, (63)
)
n ~ i o~
KAzl + Kod2sy = a—é<cg°>,s)°>> -, (64)

] L RAG L -
QS = - V2§ - KV 2C + %g%cg@,%@)s
0
P(AG) . =
+ 7129 g0 g0y, (66)
dcoS
- - - F(A -
ac= rcvzl K V2C + K,V 2S - %(68”,%0))6
C
P(AQ) ~ -
-2 @0 a0)s |, (67)
0SdC

whereﬁzzdg—kz. For a discussion of the independent eigen-
values corresponding to Cahn-Hilliard and time-dependent
Ginzburg-Landau equations, sg#8,29, respectively.

Since k=0 corresponds to a uniform translation of the
interface, we know thaf),_o=0 is the eigenvalue with the

eigenfunctionsd, &Y and d,S” [this can be easily checked
by differentiating Eqs(13) and(14) with respect taz]. Here

we concentrate only on these ground-state eigenfunctions,
which are the “slow modes.” In fact, a difficulty does appear

where the subscript O refers to the equilibrium interface. Weit k=0 for the conserved order parameter. Physically, the
have integrated the Cahn-Hilliard equatiésil) twice and interface in a conserved system cannot move freely using the
employed the far-field condition thatis bounded. The quan- Gold;stone mode as it could in the nonconserved one. Thus,
tity 4 is the chemical potential, i.e., the Lagrange multiplierdt k=0, the system can only satisfy conservation if it
that ensures the conservation of the non-nematic quantity. [IPPIeS” transversely to the interface. At#0, a perturba-
Equation(62) allows us to calculate the pressure field angtion local to the interface of a form like the Goldstone mode
Egs. (63) and (64) are the Euler-Lagrange equations which is possﬁble, since thg conservation is taken care of by the
minimize the free-energy density; they have been studied iffuctuation along the interface.
Sec. 11 B. Multiplying Eq. (66) by d.&” and Eq.(67) by dz&Y,
It is important to note that the interfacial tensigrwhich ~ adding the two resulting equations, and using B and
appears in the outer region dispersion relatib®) as a pa- the definition ofy given in Eq.(17), we obtain the leading-
rameter introduced by the Laplace &%) is now calculated order dispersion relation in the inner region as

2
QSC: p” - 7I<w y
™ f (d:S0)2de + T f dé f d¢' Gy(£ - £)(dE)(dg &)

(68)
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where

“ dgexdiq(é-¢)] _exp-ké-¢'))
27 K+ 2k

Gué-¢)=
(69
is the Green function for the operatk?—d2. In the limit k
—0, we can replac&,(¢é-¢') by its small-argument limit

1/2k. This yields the leading-order dispersion relation in the
inner region(in unscaled units

W

Qsc (70)

[’

/-Llf (d§§)0))2d§+ (Ciso— Cnen*)z/zrck

PHYSICAL REVIEW E 71, 061706(2005

10°
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FIG. 3. The inner regioiileading-order damping rate Re)g)

The pure nonconserved order parameter dispersion rel4gontinuous curveas a function of the wave numbky for 7=0.5,

tion is obtained in the limitr=7y=1, which givesci,
=Cpemand y=1vys, Whereys=Kgf i;(dg_db‘”ﬁdg is the nematic-
isotropic interfacial tension for a pure nematogen, and

K
Qs= —2K2. (73)

M1

We note that there is another time-dependent Ginzburg-

defining two distinct regimes. The nonconserved order parameter
dispersion relation Eq(73) (dashed curveand conserved param-
eter dispersion relation Eq72) (dotted curve RegionA;, relax-
ation of the concentration is the important process; redignre-
laxation of the orientational order parameter dominates.

2
(Ciso B Cnem)

20 s f (d,S”)dé

ke, = (74

Landau mode corresponding to a squeezing of the interface

with the corresponding eigenvaldeg =Qg+3f5/2u, [29]

separated by a gap from the ground state, which we do no

consider here.

The pure conserved order parameter dispersion relation
obtained in the limitu;=0. This limit corresponds to freez-
ing of the rotational motion. It can be written as

B 29I K3
¢ (Ciso_cnenDZ.

In the small-wavelength limifregion A, in Fig. 3), the

(72)

which for 7=0.5 givesk; =2.8x 10* cmt with the corre-
sponding critical wavelengthclzz.z um.

is In view of the important role played in the dynamics by
the quantitykcl, we attempt here to further interpret this
quantity. Equatior(74) can be rewritten as

1 Ks_ 1
Feprys 2

t
(Ciso - Cnenaz_C
ts

kcl = %(Ciso - Cnen)2 |§1. (75)

Wheretczléll“cfo is the relaxation time of the concentration,

relaxation of the nonconserved order parameter is the impo&and ts=3u,/2f, is the relaxation time of the orientational

tant process and

YK

(d,SP)2d¢

Qsdk— ) = (73)

while in the large-wavelength limifregionA; in Fig. 3), the
relaxation of the conserved parameter dominatesgds
given by Eq.(72).

In Fig. 3 we have plotted, forr=0.5, the inner region
dispersion relation given by E¢70) as well as the particular
limits given by Eqs(72) and(73) respectively. We have used
the experimental value for,;=0.1P [13], and the value of

order parameter. To deduce these expressions, we have used
Egs. (33) and (34). In writing the first line in Eq.(75), we

used also the definitiops=Kg/ °_°x(d§$go))2d§ of the nematic-
isotropic interfacial tension for a pure nematogen. The sec-
ond line of Eq.(75) is written as a ratio times the inverse of
the fundamental microscopic length in the problem, as dis-
cussed in Sec. lll. The ratio involves two quantities, one
intrinsic—the ratio of the concentration to orientational re-
laxation times—and one extrinsic—the square of the concen-
tration difference.

In Fig. 4, we have plotted the phase diagram in the space
(7,ke,). InregionA; (k<k ), the conserved parameter relax-
ation is the important process, while in regida the non-
conserved order parameter relaxation dominates. Nedr

I';.=1.5x10° cm®s/g was chosen to have the same velocitythe relaxation of the nonconserved order parameter is the

unit for the both order parametetg/ts=I./t.. There is a

important process for all values & except a very small

transition between these two regimes that takes place whargion neark=0. With decreasing temperature, the concen-

Qg k—2)=Q,, which gives

tration variation becomes more and more important, and the
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“ O ~ 2 R “
(PQ - kAW = (’L—z - 377> diw+ k—ngw— H,(S,0)d, Sy

50x10° |

40

- H,(8,0)dLY, (77)

30 w1 QS =H(S,C) + M\ivdgid,o@ , (78)

kc‘(cm'1)

20

Q-Wd&, [~
T@ J &' Gy(£- £)C(E) =HAS.0),  (79)

where =7y for ¢£<0 and =7, for £>0 and

0.0 . ) ) - - P(A
T Hy(S,C) = - V2S - K V2 + %(S@CO)S
FIG. 4. The phase diagra(n,kcl). RegionAy, relaxation of the aZ(A )
concentration is the important process; reghgn relaxation of the + 9 (S,¢0)C,
orientational order parameter is dominant. acaS

#(Ag)
ac?

relaxation of the conserved order parameter is dominant in a
larger region.

To sum up, we have obtained the leading-order dispersion
relation Eq.(52) in the outer regions B and C of dimension N F(Ag) (S0.¢0)S
|- In this region, the interface is sharp and can be considered oSgc v
as a surface of discontinuity. The physics is governed by the . .
dissipation due to shear flow and the dispersion relation is Irg)tegratlng Eq.(77) ox)()ar all ¢, multiplying Eq. (78) by
the classical capillary wave dispersion relation at a sharlcy and Eq.(79) by d.c,”, and integrating, using EqEL7)
interface between two fluids with the same densities and difand(68), the following result is obtained:
ferent viscosities. -

In the inner region A of dimensioky, without considering Q- ﬂkz)f W + ﬁykz
the interaction between velocity and the order parameter re- —o Qg
laxation, we have obtained the leading-order dispersion rela- " "
tion Eq_. (68). In this region, the inten_‘ace is difquive and the — le W(g)(dg%‘”)zd&fglf dé
relaxation of the order parameters is the dominant process. — —o

The important point here is that both the leading-order "
solutions fqr thg eigenvalues in the inner and outer regions Xf de"W(&)Gy(é - g')C(g')(dgeg@)% (80)
are approximations of the same eigenvalue problem given by —

Egs. (36)—(40). Therefore, in the transition region between
the inner and outer layers, the two expansions must give thgsing the matching condition,
same result. The next step is to combine them into a single
. - . . ~ 1
expression by matching these two asymptotic expansions. lim W& == lim WO(2), (81)

E—t0 € 710

Hy(S,C) = — K VA - K V2S + (Sh,Co)C

V. GENERAL DISPERSION RELATION .
Eq. (80) can be rewritten as

Now, we consider the interaction between hydrodynamics .

and relaxation of the order parameters. For details of the > 0) Q o,
. - +—

method, we refer the reader to our earlier paf@r We (pQ2 = 7k )f Wdz i

perturb the base state as follows:

—o0 Sc

R — WO N 012 -1 -
00(Z,&,0) = 0+ AU(Oexplikx - Qt), w0 {Ml J B (deS)%dé+ T L d¢

WO(Z,£,1) = 0 + AW Eexplikx - O1), X f _dE'Gy(é- f’>0(f’>(dé°)éo>2} . (82

pQ(¢,&1) = po(&) + AP(Hexplikx — Qt). (76) Using Eqgs(45—(50), the continuity of hpri;ontal velocity at
o i the interface, and the small-argument limit k/&f the Green
Substituting these forms and Eqd$65 into EQs. function, we obtain the generalized dispersion relation, in
(53)<(57), linearizing inA, and eliminatingl and P, gives unscaled units,
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s f (d:S7)2d¢ +14(Cis ~ Crem) f (d &) 2de/2KT

QQ-Qg) =

e o, (83)
m f (deS”)2dE + (Ciso ~ Crem /2KTg

where(g. is the leading-order dispersion relation in the in-[Im(Q)=0], i.e., a transition between a week damping re-
ner region Eq(70) and (2, is the leading order dispersion gime where|Qg|> 7k?/p and a strong damping one where
relation in the outer region E¢52). || < 7k?/ p. The concentration variation induces a decrease
~ The real part of the solution of E¢83) and its asymptotic  of the wave number corresponding to the transition between
limits given by Eqs(52) and(70) are drawn in Fig. 5. Three these two regimeéin the pure nematic system the transition
regions can be clearly distinguished. In the short-wavelengtipyes place dt=10 cnt?, while in the mixture the transition
Iin|1it (r_egioanF]in F(ijg. 5, the interfe_lcehis giﬁu_se and the igkes place ak=k.).

relaxation of the order parameters Is the dominant process. g phase diagram in the spaeek. ) is plotted in Fig. 6.
The dispersion relation is given by E.0) (dashed curve in In regionB, (k<kc2) hydrodynamics Zis important, while in

Fig. 5. We note that in region A, the inner region dispersion’ " . g
relation has its asymptotic form given by Eq3) (see Fig. region A (k> kcz) the relaxation of the nonconserved order

3), meaning that the relaxation of the nonconserved ordeParameter and concentration dominate. We note that for a
parameter is dominant. pure nematic system, the transition between regigyend A

In the long-wavelength limit, the viscous damping procesdakes pl_ace akc2:_9-5>< 10° cm™%. The second region ex-
in the outer region dominates and the corresponding dispefends with decreasing temperature and consequently with in-
sion relation is given by Eq(52) (dotted curve in F|g b creasing concentration variation, but the variation is very
The transition between these two regions takes place whe@W.
Re(Q2,)=Res), which gives forr=0.5 the critical wave
numberk.,=2.2x10* cm™* and the corresponding critical VI. CONCLUSIONS
wavelengthxczz 2.9 um. Two regions can be further distin-
guished in the hydrodynamics limit. The regi@) corre-
sponds tok<k.=1 cnil, the damping process dominates, oo
and the interface mixture behaves as an interface betwedlfMatic MIxtures. _
two isotropic fluids. Finally, the intermediate regi@g cor- We have used a free-energy density motdel Q) as a
responds tck. <k<k, . In this range of the wave numbers, SUm of two terms. The first term is the free-energy density of

2 1

the relaxation of the conserved order parameter plays an inj1® |sotTrﬁp|c mmng for the wo componerlw_ts 541 of FIO? H
portant role and cannot be ruled out. type. e second term Is a generalized form of the
Landau—de Gennes free-energy density in which we have

The slope discontinuities of the two curves in Fig. 5 indi- . luded th ind b q f . .
cate the points where the propagating components canclcluded the coupling betweenand Q, from microscopic

considerations Eq(5). The two representative phase dia-

In this paper, we have examined surface modes at the
nematic-isotropic interface in thermotropic nematic—non-

25x10°
— 20 — B
. 2 A
&
15 -
10™ 10° 10’ 10°-1 10° 10* 10° 10
k(cm) 1 1 1 | |
0.0 0.2 0.4 0.6 0.8 1.0
T
FIG. 5. The damping rate R@) as a function ok for 7=0.5.
The general dispersion relation E(3) (continuous curvg the FIG. 6. The(r,k;)) phase diagram. RegidBy,, hydrodynamics
inner region dispersion relation E.0) (dashed ling and the outer is dominant; regiorA, the relaxation of the orientational order pa-
region dispersion relation E@52) (dotted curve rameter and concentration govern the physics.
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grams generated by this form of the free energy were pretained[Eqgs.(74) and(75)] and plotted in Fig. 4 as a function
sented in Fig. 1. of temperature.

We have considered a planar nematic-isotropic interface Using the method of matching asymptotic expansions, we
in equilibrium. Minimizing the free-energy functional, we have obtained the generalized dispersion relation (Bg).
have obtained the Euler-Lagrange equation for the equilibThe corresponding relaxation rate is plotted in Fig. 5. Three
rium profiles of the order parameters and the interfacial tengjstinct regions can be distinguishe@. At very low values
sion for the two phase diagrams presented. We mention thgf the wave numbek <k, in regionB,, the nematic behaves
this interface constitutes the base state in the inner region ¢fs g isotropic fluid and the dissipation due to shear flow
the dynamical system. _ dominatesjii) at intermediate values dé <k<k, in re-

To explore the dynamics of this system, we have supplegion B, the influence of the conserved parameter is impor-
mented the Hess-Olmsted-Goldbart-Qian-Sheng model f ant: and finally(iii) at large values 0k>k,32, in region A,

the orle.n.tanonal, npnconserved, order parameter with th?ne relaxation of the nonconserved order parameter governs
Cahn-Hilliard equation for the conserved parameter, the co h

. . Mhe physics. In a pure nematogenic system, also three regions
centration. We have assumed an |sothermal system, Char%‘i“fust be clearly distinguishe@ee Fig. 1 in Ref[4]). In the
terized by a scalar order paramegerin this way, we have

considered an isotropic interfacial tension. ie.. inde endel ng-wavelength limit, the dissipation due to shear flow
iaer ISOtropIc | 'a lon, 1.€., Indep ominates; at intermediate values of wavelength curvature,
of the director orientation at the interface and neglected al

. . 4 lasticity and backflow effects play an important role; and
co_upllng between the director and the hydrodynamm ﬂc.’W' Ir1fi ally at small wavelengths the relaxation of the noncon-
thlssc:(;nsa%esl’ bv(\)/? F;]gaseescgﬁgzé?g dszirr?: deens_ll_tg}_ brl:]t d'r;gg rved order parameter is important. Therefore, even though
Vi ies. hav ! qurlibrium -p the two figures look similar, the differences are significant.
nematic-isotropic interface as the base state of the system. We mention that the calculation is simplified as it ne-
The front was then perturbed with a small-amplitude mono-

hromatic plane wave and the linear stability of the front w. lected the coupling between the nematic director and the
gxaomir?eg plane ave s € linear stability ot the ront Was,y qrodynamics flow, as well as the anchoring effect of the

In the outer region. in the leadina order. the kev result i director at the interface. We did not use the complete set of
uterregion, | ) Ing order, KEY TESU 1S eslie viscosities. Nevertheless, it seems likely that much of
Eq. (5.2)' This IS the classical dispersion relation for thethe physics will be retained in the general case. However
damping .Of Cap'”afy waves. . . particularly when the boundary condition at the interface is
In the Inner region, 1gnoring the interaction be‘.WeeF‘ the lanar, or when there are anchoring transitions as one goes
hydr_odynamlcs and the or_der parameter dynamics, in th long the phase coexistence line, there may be interesting
leading order, the problem is model C in the Hohenberg an ew extra physics in the dynamics
Halperin classification. This couples a nonconserved dynam- The method we have used will élso permit the inclusion
ics governed by the time-dependent Ginzburg-Landau €At the coupling between interface oscillations, the director

}_'ﬂ? ‘an a gonselrv?ﬁ_ dynamm;s <i_escr|bedh by thgt (.:ahdrﬁeld, and the velocity, by including backflow effects. A fur-
lard equation. In this approximation, we have oblain€dy,q, complication involves addition of the density. This will

the dispersion relation in the inner region E§8), which we . . . N i
have plotted in Fig. 3. Two distinct regions can be distin-?allllgw the study to include interfaces in lyotropic liquid crys

guished. In the small-wavelength limit, fe> kcl, the relax-
ation of the nonconserved order parameter is the important
process. In the long-wavelength limit, far< kcl, the relax-
ation of the conserved parameter becomes dominant. So, ig- V.P.N. and S.K. thank the School of Mathematics, Univer-
noring hydrodynamics degrees of freedom, the addition of &ity of Southampton for scientific hospitality. V.P.N. ac-
conserved parameter has a profound effect on the dynamiéhowledges support from a Royal Society grant and thanks
at long wavelengths. The critical wave number which  P. Oswald for fruitful discussions. S.K. thanks COSLAB for
defines the transition between these two regions was olfunding his visit to Southampton.
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